

Management of low-productive forests, the challenge of including forest non-marketed services

María GONZÁLEZ-SANCHIS¹, Carlos ECHEVERRÍA², Juan Manuel GARCÍA-SORO¹, Antonio J. MOLINA¹, Javier PÉREZ-ROMERO², Félix FRANCÉS², Manuel PULIDO-VELÁZQUEZ², Alberto GARCÍA-PRATS¹, Antonio DEL CAMPO¹

¹ Re-Forest, Instituto de Investigación en Agua y Medio Ambiente (IIAMA), Universidad Politécnica de Valencia, camino de vera s/n, 46022, Valencia, España.

² Instituto de Investigación en Agua y Medio Ambiente (IIAMA), Universidad Politécnica de Valencia, camino de vera s/n, 46022, Valencia, España.

macgonsa@gmail.com

aj.molina@upv.es

Management of *low-productive forests*, the challenge of including forest non-marketed services

The vicious circle

Management of low-productive forests, the challenge of *including forest non-marketed services* Forest expansion reduces river's streamflow

- ▽ Significant decreasing trend
- No trend
- Natural
- Regulated regime
- Highly regulated regime

Lorenzo-Lacruz et al. (2012). Recent trends in Iberian streamflows (1945-2005)

Global distribution of study cases providing data on changes in water yield following forest restoration or forest cover expansion. The pie charts indicate the distribution of water yield responses reported in the studies from the different regions. Red represents a negative response, green a positive response, and purple mixed results. Neutral response is represented by light blue. Source for the world map is the US National Park Service (Natural Earth physical map; https://www.arogis.com/home/item.html? id=cdec722.atod34cfba23094aadf8923a0).

Management of low-productive forests, the challenge of including forest non-marketed services

Hydrology-based silvilculture: increasing water availability <u>at the stand scale</u>

"Exploring" how **diminishing ET** could improve blue/green ratio

Management of low-productive forests, the challenge of including forest non-marketed services

Hydrology-based silvilculture: increasing water availability at the stand scale

Table 4 Itemisation of the water cycle at the stand scale for the whole study spell (March 2009–May 2011) for each treatment (C control, L low intensity, M medium intensity, H high intensity 2008, H98 high intensity 1998)

	Gr	It	Thr	Т	<i>I</i> _{>30cm}	Ε	ET total	B/G
mm								
С	1,545	611.8	933.2	319.8	207.0	406.3	1,338.0	0.155
L	1,545	517.6	1,027.4	264.2	395.5	367.7	1,149.5	0.344
М	1,545	400.2	1,144.8	180.8	455.8	508.3	1,089.2	0.418
H	1,545	191.6	1,353.4	261.1	647.4	445.0	897.6	0.721
H98	1,545	419.5	1,125.5	168.4	499.5	457.6	1,045.5	0.478
%								
С	100	39.6	60.4	20.7	13.4	26.3	86.6	0.155
L	100	33.5	66.5	17.1	25.6	23.8	74.4	0.344
М	100	25.9	74.1	11.7	29.5	32.9	70.5	0.418
H	100	12.4	87.6	16.9	41.9	28.8	58.1	0.721
H98	100	27.1	72.8	10.9	32.3	29.6	67.7	0.478

Gr: gross rainfall; It: interception loss; Thr: throughfall; T: stand transpiration; $I_{>30cm}$: deep infiltration; E: evaporation from soil, litterfall and grass/scrub transpiration. ET total: summing up of the evapotranspiration terms; B/G: blue (deep infiltration) to green (total evapotranspiration) ratio. See text for details

ORESTS

Management of low-productive forests, the challenge of including forest non-marketed services

Ecohydrology-based silvilculture: optimizing the management of low-productive forests at the catchment scale

First approach:

● "Barranc del Carraixet" watershed

- 20 km away from Valencia city.
- Carraixet's catchment, 311.2 km2, where 47 % corresponds to Public Forest (Natural Park) Sierra Calderona.
- Climate: Mediterranean irregular rainfall and intense summer droughts (T: 17 °C and P: 466 mm).
- Soils: shallow (10-40cm), sandy-silty-loam texture, basic pH (7.7-8.2), high CO3Ca(26-38 %). Parent rock is karstified.
- Vegetation: Typical Mediterranean bush and natural P. halepensis.
- High lightning frequency.
- Experimental plots: managed vs. unmanaged

ET values (Landsat 8) significantly higher.

First approach:

Effects of forest management on Water availability

Water year	Gr(mm)		Domand (hm ³)	Contribution	Net increasing		
water year			Demand (mm)	Unmanaged	Managed	(m^{3})	(mm)
2007-2008	3	345	2.3	1.3	1.4	8416.7	0.71
2008-2009	4	443	2.4	1.5	1.5	8863.0	0.74
2009-2010	3	352	2.4	1.1	1.1	0	0
2010-2011	3	314	2.5	0.7	0.7	0	0
2011 - 2012	2	228	2.5	0.4	0.4		0
2012-2013	4	460	2.5	1.8	1.8	4375.9	0.37
2013 - 2014	1	167	2.5	0.2	0.2	0	0
2014 - 2015	3	348	2.6	1.0	1.0	2767.9	0.23
2015 - 2016	2	232	2.6	0.5	0.5	4847.4	0.41
2016-2017	5	552	2.6	4.2	4.2	3390.1	0.28

Forest management did not significant increase water resources, especially for dry years

Forest management reduces 27 % fire risk changing its category.

Legend

iama

Exceptional Fire Risk Extreme Fire Danger Very High Fire Risk High Fire Risk Above Average Fire Risk Average or Low

Duration (day)	Unamanaged	Managed
0.5	331.6 ± 97.1	146.9 ± 113.2
1	567.4 ± 166.4	427.2 ± 265.9
1.5	1439.8 ± 336.2	1122.4 ± 480.6
2	1736.7 ± 422.7	1639.3 ± 585.7

Forest management reduces 26 % of the total burned area.

Effects of forest management based on multi-criteria

$BC = (MVW \cdot W \cdot (1 - P_f) + MVW \cdot W \cdot P_f + BV \cdot TB) / (P_f \cdot FEC \cdot BrA + P_f \cdot RC \cdot BrA + MC)$

- MVW: Water marginal value (ℓ/m^3).
- W: Water (m³).
- Pf: Fire probabilitity.
- BV: Biomass value (€/T).
- TB: Biomass (T).
- FEC: Costes de extinción (€/ha).
- BrA: Burned area (ha).
- RC: Restoration costs (€/ha).
- MC: Management costs(€/ha).

Variable	COST	Units	Reference
Water (MVW)	0.175	$e \text{ m}^{-3}$	Pulido-Velázquez et al. (2013)
Fire extinction	375.5	$e ha^{-1}$	Vázquez et al. (2014)
Restoration	6056.74	$e ha^{-1}$	MAGRAMA
Biomass	42	$e \ {\rm Tn}^{-1}$	de Serra (2016)
Management	1635	$e ha^{-1}$	de Serra (2016)

3 different climatic scenarios 3 years-long each

Effects of forest management based on multi-criteria

 $BC = (MVW \cdot W \cdot (1 - P_f) + MVW \cdot W \cdot P_f + BV \cdot TB) / (P_f \cdot FEC \cdot BrA + P_f \cdot RC \cdot BrA + MC)$

Sconario	Gr (mm)	Water	Water + Biomass + Fire							
Stenario	GI (IIIII)	Managed	Unmanaged			Managed				
			0.5 d.	1 d.	1.5 d.	2 d.	0.5 d.	1 d.	1.5 d.	2 d.
	299									
1	299	2.3	1.7	0.7	0.3	0.2	1.3^{*}	1.2	0.4^{*}	0.2^{*}
	371	*								
	246									
2	213	1.5	1.1	0.4	0.2	0.1	0.9^{*}	0.8	0.3^{*}	0.2^{*}
	312									
	145									
3	221	2.2	1.6	0.6	0.3	0.1	1.3^{*}	0.7	0.4^{*}	0.2^{*}
	434									

- Upper catchment areas plays an important role in provisioning water.
- Forest management increments water quantity, but not enough to compensate economic costs.
- Forest management greatly reduces fire risks and fire propagation.
- Combing water + biomass + fire is key to get profitable forest management and then attractive for stakeholders.
- Restoration costs are the most important in the economic balance, followed by those related to biomass and water yield.

