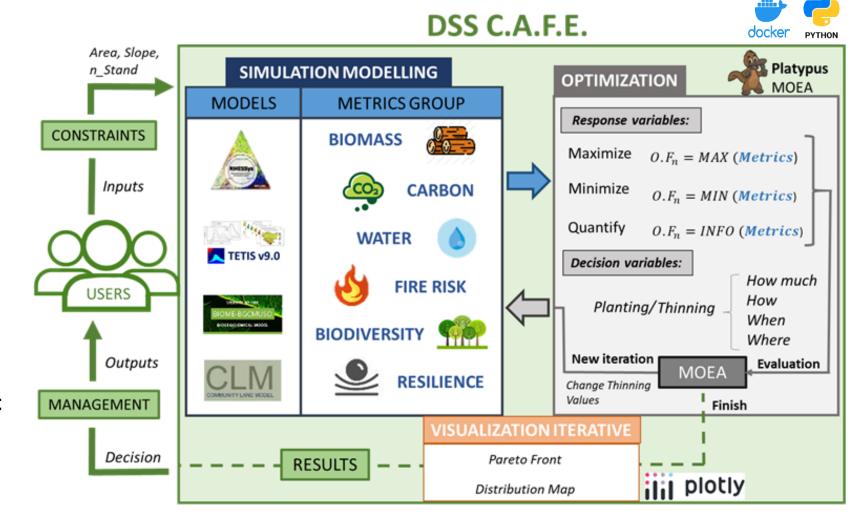


CAFE Decision Support System for Multiobjective Planning of Sustainable Forest Management

María González Sanchis, Javier Pérez Romero y Antonio del Campo

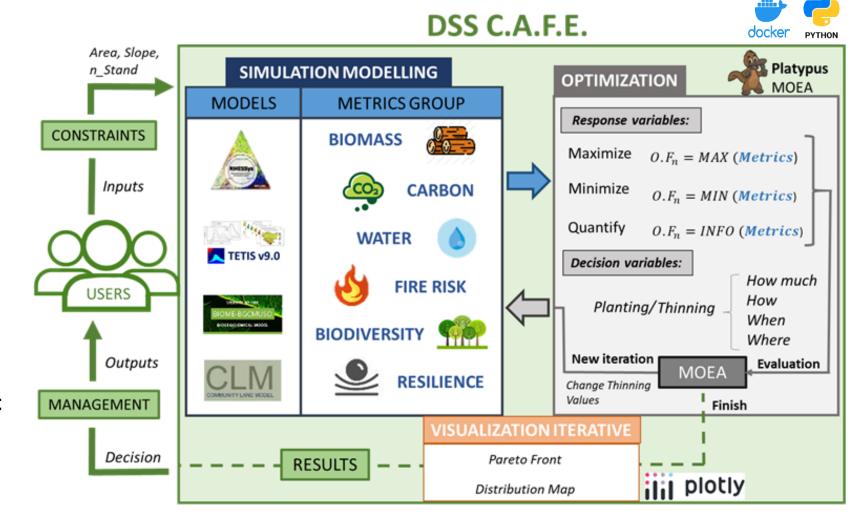
UPV 23/03/2023

The project LIFE RESILIENT FORESTS – Coupling water, fire and climate resilience with biomass production from forestry to adapt watersheds to climate change is co-funded by the LIFE Programme of the European Union under contract number LIFE 17 CCA/ES/000063.



What is CAFE?

- **1-** Multi-Objective Decision Support System (**MODSS**) for forest management
- **2-** C.A.F.E. (Carbon, Aqua, Fire & Eco-resilience) combines **eco-hydrological simulation**¹ and **optimization**² with multi-objectives evolutionary algorithms (MOEA)
- **3-** Provides the **optimal management plan** and **quantification** of the multiple **ecosystem services**.

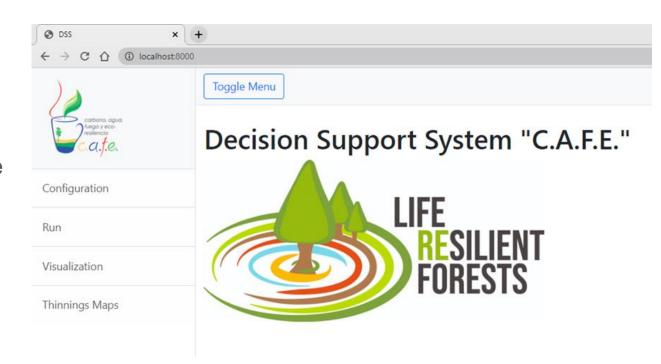


What is CAFE?

- **1-** Multi-Objective Decision Support System (**MODSS**) for forest management
- **2-** C.A.F.E. (Carbon, Aqua, Fire & Eco-resilience) combines **eco-hydrological simulation**¹ and **optimization**² with multi-objectives evolutionary algorithms (MOEA)
- **3-** Provides the **optimal management plan** and **quantification** of the multiple **ecosystem services**.

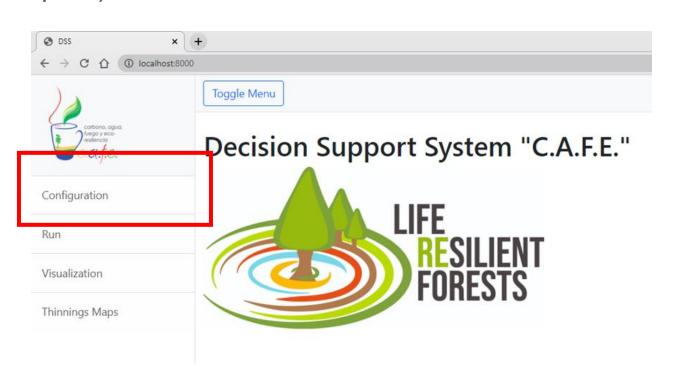
How to install it?

- 1. Install Linux on Windows with WSL (https://learn.microsoft.com/en-us/windows/wsl/install)
- 2. Download and install Docker (https://www.docker.com/products/docker-desktop/)
- 3. Download DSS CAFE (https://www.resilientforest.eu/dss-tool/)
- 4. Unzip folder "dss_app-tar.gz.tar".
- 5. Execute (double click): Windows_install_dockerCAFE.exe



How to start the DSS?

- 1. Execute (double click): Windows_run_dockerCAFE.exe
- 2. Write in the open terminal (cmd): python app.py
- 3. Write in the web browser: Localhost:8000



How to configure the tool?

1. Go to the Configuration tab (first option on the left panel).

How to configure the tool?

- 1. Go to the Configuration tab (first option on the left panel).
- 2. Select an enter the section of the model you want to use: RHESSys, BIOME or TETIS.

" Here, you configure the parameters related to the management that the manager wants to plan and that the DSS has to answer (Decision Variables)".

Configuration								
RHESSys	BIOME	TETIS	Common	Stands				
Case study								
BIOME ini file: /app/Own_da	ita/DBF_C	ontinental/(Continental.in	i				
Decision var	iables							
Management	Protec	tor						
Planting Ye	es							
How much? (PI	anting)							
Density initial in 600	mature for	est						
Weight kgC/m ² 0,003	of plant							
Minimum planti 500	ng density							
Maximum planti 2000	ing density							
How much? (Th	ninning)							
Minimum Thinn	ing %							
Maximum Thinn	ing %							
When? (Thinnin	ng)							
Year since start of	of simulatio	n for first thin	nning					
Years of rest bet	ween interv	ventions						
Number of inter	ventions							

Save configuration

How to configure the tool?

- 1. Go to the Configuration tab (first option on the left panel).
- 2. Select an enter the section of the model you want to use: RHESSys, BIOME or TETIS.

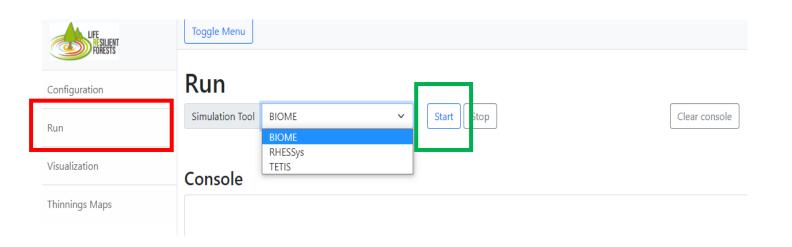
" Here, you configure the parameters related to the management that the manager wants to plan and that the DSS has to answer (Decision Variables)".

3. Enter the Common section to select the metrics to optimise (maximise or minimise) or only quantify (info).

"Here, you select the goods and services that you are interested in managing and that the model used can calculate (Response Variables)".

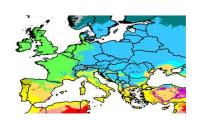
Confi	gura	tion		1
RHESSys	BIOME	TETIS	Common	Stands
Operation	nal costs			
	od extraction			

1100					
Metrics	Opti	mization type	Models		
☑ Biomass	 Maximize 	O Minimize	○ Info	RHESSys, Biome, Tetis	
✓ Wood	O Maximize	O Minimize	Info	Biome	
✓ Carbon	O Maximize	O Minimize	Info	RHESSys	
✓ SoilCarbon	O Maximize	O Minimize	Info	Biome	
Respiration	O Maximize	O Minimize	Info	RHESSys, Biome	
✓ NEP	O Maximize	O Minimize	Info	Biome	
Transpiration	O Maximize	O Minimize	Info	Biome, Tetis	
Evaporation	O Maximize	O Minimize	Info	Tetis	
✓ StreamFlow	O Maximize	O Minimize	Info	RHESSys	
✓ Water	O Maximize	O Minimize	Info	Tetis	
✓ SurfaceWater	O Maximize	O Minimize	Info	RHESSys, Biome	
✓ Percolation	 Maximize 	O Minimize	○ Info	RHESSys, Biome, Tetis	
DeepMoisture	O Maximize	O Minimize	Info	Biome	



How to run the tool?

- 1. Go to the run tab (second option on the left panel).
- 2. Select the configured model in the drop-down menu.
- 3. Click on the Start button


Option 1: Potential cases (Null modelling level)

Option 2: Adjusted cases (Low-medium modelling level) (0,1,2)

Option 3: Real cases (Advanced modelling level) (3)

Adjust to own case

Change series to local weather station

change local information: Latitude, elevation and average temperature

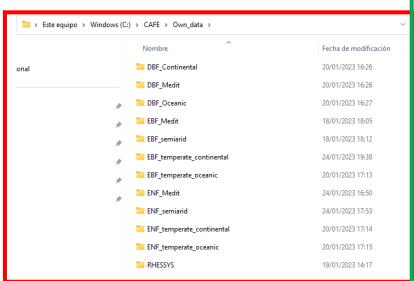
Soil

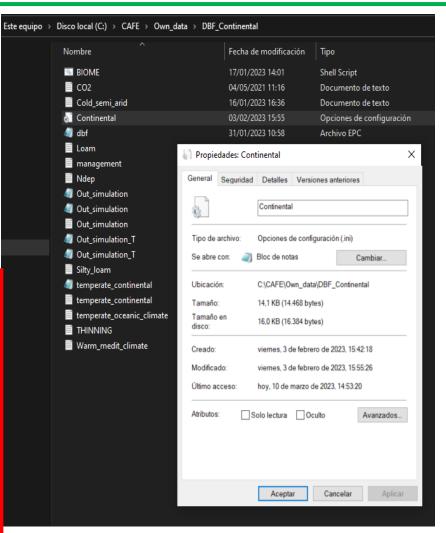
Change soil parameters:

Depth
Bulk density
Texture

Species

Change veg parameters:





Option 1: Potential cases (Null modelling level)

- 1. Select the potential cases found inside the folder downloaded from the DSS "EU_PotentialForests".
- 2. Copy selected case to folder C:/CAFE/Own_data.
- 3. Search for file names to be entered in the model paths. In the case of BIOME, the file ".ini" has to be searched.

Option 2: Adjusted cases (Low-medium modelling level) (Annex 3.2)

To adjust the potential case to a particular case, you can modify the site characteristics

- -First: Local latitude and elevation information. (Low)
- -Second: Change weather series to a local weather station. (Medium)
- -Third: Modify soil parameters such as depth or actual textures. (Medium)

archivo Editar Ver	
BBGCMuSo simulation	
MET INPUT	
temperate oceanic climate.txt	(filename) met file nam
1	(int) number of header lines in met file
	(int) number of simdays in last simyear (truncated year: <= 365)
RESTART	
	(flag) 1 = read restart; 0 = dont read restart
)	(flag) 1 = write restart; 0 = dont write restart
enf_temperate_oceanic.endpoint	(filename) name of the input restart file
enf_temperate_oceanic1.endpoint	(filename) name of the output restart file
TIME_DEFINE	
20	(int) number of simulation years
1901	(int) first simulation year
	(flag) 1 = spinup run; 0 = normal run
5000	(int) maximum number of spinup years
CO2_CONTROL	
	(flag) 0=constant; 1=vary with file
290.0	(ppm) constant atmospheric CO2 concentration
02.txt	(filename) name of the CO2 file
IDEP_CONTROL	
	(flag) 0=constant; 1=vary with file
0.000200	(kgN/m2/yr) wet+dry atmospheric deposition of N
ldep.txt	(filename) name of the N-dep file
SITE	gray to gain the control of
181.0	(m) site elevation
13.30	(degrees) site latitude (- for S.Hem.)
0.20	(DIM) site shortwave albedo
15.00	(Celsius) mean annual air temperature
0.96 0.50	(Celsius) mean annual air temperature range (prop.) proprortion of NH4 flux of N-deposition

Option 2: Adjusted cases (Low-medium modelling level) (Annex 3.2)

To adjust the potential case to a particular case, you can modify the site characteristics

- -First: Local latitude and elevation information. (Low)
- -Second: Change weather series to a local weather station. (Medium)
- -Third: Modify soil parameters such as depth or actual textures. (Medium)

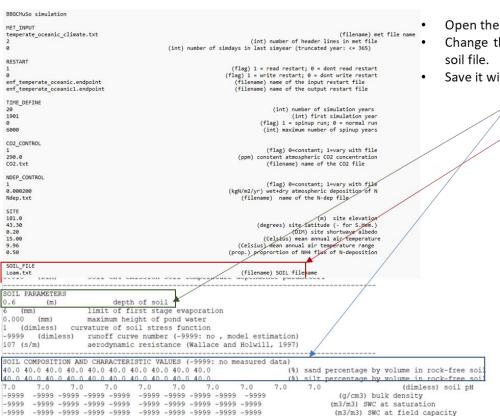
	Editar Bu	scar Vista	Codificación				entas Macro		gins Ventana ?	
WSL2_	and_Docker_l	ink.txt 🗵	Loam.txt 🗵 📙	management.txt	⊠ ₩arm_m	edit_clima	ite.txt 🗵 🗒 Rea	dme_to_run_in_D	SS_CAFE.txt 🗵 📙 t	emperate_c
1	year	yda	y Tma	x Tmi	n Tda	ıy	prcp	VPD sra	d dayle	n
2			(degC) (deg	C) (deg	lC)	(cm)	(Pa)	(Wm-2)	(s)
3	2000	1	-1.28	-7.28	-2.93	0	138.46	175.61	30438	
4	2000	2	-4.34	-10.34	-5.99	0	112.36	177.35	30492	
5	2000	3	-2.56	-8.56	-4.21	0	126.96	177.62	30551	
6	2000	4	-0.5	-6.5	-2.15	0	145.9	177.66	30614	
7	2000	5	-0.25	-6.25	-1.9	0	148.35	178.12	30681	
8	2000	6	1.43	-4.57	-0.22	0	165.8	177.97	30752	
9	2000	7	1.23	-4.77	-0.42	0	163.64	178.59	30828	
10	2000	8	-0.27	-6.27	-1.92	0	148.15	180.65	30907	
11	2000	9	-3.52	-9.52	-5.17	0.1		.89 148	.54 30991	
12	2000	10	-1.86	-7.86	-3.51	0	133.14	184.05	31079	
13	2000	11	0.57	-5.43	-1.08	0.1	156.66	148.72	31171	
14	2000	12	1.39	-4.61	-0.26	0.0	3 165	.37 148	.88 31266	
15	2000	13	2.51	-3.49	0.86	0	177.93	184.73	31366	
16	2000	14	0.65	-5.35	-1 0	157	.49 186	.92 314	69	
17	2000	15	0.71	-5.29	-0.94	0.8	9 158	.12 151	.64 31575	
18	2000	16	-3.05	-9.05	-4.7	1.1	6 122	.79 157	.18 31686	
19	2000	17	-5.78	-11.78	-7.43	0.6	2 101	.63 160	.86 31800	
20	2000	18	-0.57	-6.57	-2.22	0.1	3 145	.22 161	.06 31917	
21	2000	19	-3.52	-9.52	-5.17	0.0	5 118	.89 163	.39 32038	
22	2000	20	0.82	-5.18	-0.83	0	159.27	201.48	32161	
23	2000	21	-0.39	-6.39	-2.04	0	146.97	203.9	32289	
24	2000	22	-0.86	-6.86	-2.51	0	142.42	205.7	32419	
25	2000	23	-2.91	-8.91	-4.56	0	123.97	208.17	32552	
26	2000	24	-7.01	-13.01	-8.66	0	93.18	211.49	32688	
27	2000	25	-7.25	-13.25	-8.9	0	91.61	213.29	32827	
28	2000	26	-5.69	-11.69	-7.34	0	102.27	214.57	32969	
29	2000	27	-6.63	-12.63	-8.28	0	95.72	216.74	33114	
30	2000	28	-11 28	-17 28	-12 03	Ω	68 1	220 04	22261	

(m3/m3) SWC at wilting point

(m3/m3) SWC at hygroscopic water content

(dimless) drainage coefficient

(cm/day) hydraulic condictivity at saturation



How do I build a case study?

Option 2: Adjusted cases (Low-medium modelling level) (Annex 3.2)

To adjust the potential case to a particular case, you can modify the site characteristics

- -First: Local latitude and elevation information. (Low)
- -Second: Change weather series to a local weather station. (Medium)
- -Third: Modify soil parameters such as depth or actual textures. (Medium)

-9999 -9999 -9999 -9999

-9999 -9999 -9999 -9999

-9999

-9999

-9999

-9999

-9999

-9999

-9999

-9999

-9999 -9999 -9999

-9999 -9999 -9999

-9999 -9999 -9999

-9999 -9999 -9999 -9999

- Open the soil file indicated in the ini file.
- Change the soil texture and depth in the soil file.
- Save it with the same name.

Option 3: Real cases (Advanced modelling level)

-Finally: Once the previous steps have been completed, it would be necessary to modify vegetation parameters to adapt them to a specific species.

Folder	.EPC file	Climate	Potential forest	Example species
DBF_Medit	dbf	Warm_medit	Dediduous Mediterranean quercus (i.e. Quercus faginea)	Quercus faginea
DBF_Oceanic	dfb	temperate_oceanic	Decidous tempreate oceanic forest (i.e. Quercus robur)	Quercus, Fagus, Acer
DBF_Continental	dfb	temperate_continental	Decidous tempreate continental forest (i.e. Quercus robur)	Quercus, Fagus, Acer
EBF_Medit	ebf	Warm_medit_climate	Evergreen Mediterranean forest (i.e. Quercus ilex)	Quercus ilex, broadleaf shrub
EBF_semiarid	ebf	Cold_semiarid	Evergreen semiarid Mediterranean forest (i.e. Quercus ilex)	Quercus ilex, broadleaf shrub
EBF_Continental	ebf	temperate_continental	Evergreen temperate continental forest (i.e. Quercus ilex)	Quercus ilex, broadleaf shrub
EBF_Oceanic	ebf	temperate_oceanic	Evergreen tempreate oceanic forest (i.e. Quercus ilex)	Quercus ilex, broadleaf shrub
ENF_Medit	enf	Warm_medit	Evergreen Mediterranean conifera forest (Pinus pinaster, P. nigra, etc)	Pinus pinaster, P. nigra
ENF_semiarid	enf	Cold_semiarid	Evergreen Semiarid Mediterranean conifera forest (Pinus halepensis, P. pinaster etc)	Pinus halepensis, P. pinea
ENF_Oceanic	enf	temperate_oceanic_climate	Evergreen tempreate oceanic conifer forest (Pinus radiata, Pinus pinaster)	Pinus radiata, P. pinaster, P. sylvestris
ENF_Continental	enf	temperate_continental	Evergreen tempreate continental conifer forest (Pinus radiata, Pinus pinaster)	Pinus radiata, P. pinaster, P. sylvestris
Acacia	ebf	temperate_oceanic		Acacia
Eucalyptus	ebf	temperate_oceanic		Eucalyptus

www.resilientforest.eu @LIFE_RESILIENT info@resilientforest.eu

Thanks!

Project Partners

The project LIFE RESILIENT FORESTS – Coupling water, fire and climate resilience with biomass production from forestry to adapt watersheds to climate change is co-funded by the LIFE Programme of the European Union under contract number LIFE 17 CCA/ES/000063.